发布时间:2025-08-13 09:43:15
威海华锐仪表有限公司带您一起了解山东智能涡轮流量计选型的信息,超声波流量计缺点(1)超声波流量计的温度测量范围不高,一般只能测量温度低于℃的流体。(2)抗干扰能力差。易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度。(3)直管段要求严格,为前20D,后5D。否则离散性差,测量精度低。(4)安装的不确定性,会给流量测量带来较大误差。(5)测量管道因结垢,会严重影响测量准确度,带来显著的测量误差,甚至在严重时仪表无流量显示。(6)可靠性、精度等级不高(一般为5~5级左右),重复性差。(7)使用寿命短(一般精度只能保证一年)。(8)超声波流量计是通过测量流体速度来确定体积流量,对液体应该测量它的质量流量,仪表测量质量流量是通过体积流量乘以人为设定的密度后得到的,当流体温度变化时,流体密度是变化的,人为设定密度值,不能保证质量流量的准确度。只能在测量流体速度的同时,又测量了流体密度,才能通过运算,得到真实质量流量值。(9)价格较高。
山东智能涡轮流量计选型,流量测量技术与仪表的应用大致有以下几个领域。能源计量能源分为一次能源(煤炭、原油、煤层气、石油气和天然气)、二次能源(电力、焦炭、人工燃气、成品油、液化石油气、蒸汽)及载能工质(压缩空气、氧、氮、氢、水)等。能源计量是科学管理能源,实现节能降耗,提高经济效益的重要手段。流量仪表是能源计量仪表的重要组成部分,水、人工燃气、天然气、蒸汽和油品这些常用的能源都使用着数量极其庞大的流量计,它们是能源管理和经济核算不可缺少的工具。
电磁流量计的测量原理是基于法拉第电磁感应原理定律导电液体在磁场中作切割磁力线运动时,导体中产生感应电势,其感应电热E为式中k仪表常数B磁感应强度V测量管道截面内的平均流速D测量管道截面的内径流量测量技术与仪表的应用大致有以下几个领域。海洋、江河湖泊这些领域为敞开流道,一般需检测流速,然后推算流量。流速计和流量计所依据的物理原理及流体力学基础是共通的但是仪表原理及结构以及使用前提有很大差别。
流量计发展历史早在年,瑞士人丹尼尔伯努利以第壹伯努利方程为基础利用差压法测量水流量。后来意大利人G.B.文丘里研究用文丘里管测量流量,并于年发表了研究结果。年,美国人赫谢尔应用文丘里管制成了测量水流量的的实用测量装置。20世纪初期到中期,原有的测量原理逐渐走向成熟,人们不再将思路局限在原有的测量方法上,而是开始了新的探索。到了30年代,又出现了探讨用声波测量液体和气体的流速的方法声波测量流量的方法,但到第二次世界大战为止未获得很大进展,直到年才有了应用声循环法的马克森流量计的世,用于测量航空燃料的流量。20世纪的60年代以后,测量仪表开始向精密化、小型化等方向发展。随着集成电路技术的迅速发展,具有锁相环路技术的超声(波)流量计也得到了普遍应用,微型计算机的广泛应用,进一步提高了流量测量的能力,如激光多普勒流速计应用微型计算机后,可处理较为复杂的信号。
威海华锐仪表有限公司带您一起了解山东智能涡轮流量计选型的信息,超声波流量计缺点(1)超声波流量计的温度测量范围不高,一般只能测量温度低于℃的流体。(2)抗干扰能力差。易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度。(3)直管段要求严格,为前20D,后5D。否则离散性差,测量精度低。(4)安装的不确定性,会给流量测量带来较大误差。(5)测量管道因结垢,会严重影响测量准确度,带来显著的测量误差,甚至在严重时仪表无流量显示。(6)可靠性、精度等级不高(一般为5~5级左右),重复性差。(7)使用寿命短(一般精度只能保证一年)。(8)超声波流量计是通过测量流体速度来确定体积流量,对液体应该测量它的质量流量,仪表测量质量流量是通过体积流量乘以人为设定的密度后得到的,当流体温度变化时,流体密度是变化的,人为设定密度值,不能保证质量流量的准确度。只能在测量流体速度的同时,又测量了流体密度,才能通过运算,得到真实质量流量值。(9)价格较高。
山东智能涡轮流量计选型,流量测量技术与仪表的应用大致有以下几个领域。能源计量能源分为一次能源(煤炭、原油、煤层气、石油气和天然气)、二次能源(电力、焦炭、人工燃气、成品油、液化石油气、蒸汽)及载能工质(压缩空气、氧、氮、氢、水)等。能源计量是科学管理能源,实现节能降耗,提高经济效益的重要手段。流量仪表是能源计量仪表的重要组成部分,水、人工燃气、天然气、蒸汽和油品这些常用的能源都使用着数量极其庞大的流量计,它们是能源管理和经济核算不可缺少的工具。
电磁流量计的测量原理是基于法拉第电磁感应原理定律导电液体在磁场中作切割磁力线运动时,导体中产生感应电势,其感应电热E为式中k仪表常数B磁感应强度V测量管道截面内的平均流速D测量管道截面的内径流量测量技术与仪表的应用大致有以下几个领域。海洋、江河湖泊这些领域为敞开流道,一般需检测流速,然后推算流量。流速计和流量计所依据的物理原理及流体力学基础是共通的但是仪表原理及结构以及使用前提有很大差别。
流量计发展历史早在年,瑞士人丹尼尔伯努利以第壹伯努利方程为基础利用差压法测量水流量。后来意大利人G.B.文丘里研究用文丘里管测量流量,并于年发表了研究结果。年,美国人赫谢尔应用文丘里管制成了测量水流量的的实用测量装置。20世纪初期到中期,原有的测量原理逐渐走向成熟,人们不再将思路局限在原有的测量方法上,而是开始了新的探索。到了30年代,又出现了探讨用声波测量液体和气体的流速的方法声波测量流量的方法,但到第二次世界大战为止未获得很大进展,直到年才有了应用声循环法的马克森流量计的世,用于测量航空燃料的流量。20世纪的60年代以后,测量仪表开始向精密化、小型化等方向发展。随着集成电路技术的迅速发展,具有锁相环路技术的超声(波)流量计也得到了普遍应用,微型计算机的广泛应用,进一步提高了流量测量的能力,如激光多普勒流速计应用微型计算机后,可处理较为复杂的信号。